APP开发平台 > Blog > 2018,人工智能可以在哪些领域最快得到应用和普及?(二)

2018,人工智能可以在哪些领域最快得到应用和普及?(二)

  近日,IBM 全球杰出工程师、IBM 研究院认知系统全球研究负责人林咏华女士接受了“AI时代的移动技术革新”大会主办方的采访(大会将于2018年1月5日在北京国际会议中心举行,林咏华女士是受邀演讲嘉宾之一。),聊了聊她对上述问题的看法。以下内容根据采访记录整理而成。

  如何看待当下的人工智能热潮?有多少是理性驱使,又有多少是人云亦云?

  人工智能目前无论在企业还是投资界都是被火爆地追逐着。说实在话,当IBM在 2011年构建出 Watson,并首次在智力竞赛中打败最优秀的人类选手时,能预见人工智能对未来业界发展的重要性,但没有想象到这种人人谈人工智能的火爆局面。

  纵观整个信息技术在过去10年的发展,无论是10年前移动通信的发展热潮,还是5年前云计算的风起云涌,都没有今天人工智能被关注的广泛性和火爆性。原因是什么呢?是今天人工智能的可实验性远远高于之前的信息科技。

  这个“可实验性”是指一个开发者、一个大学生,甚至会编程的中学生都可以进行人工智能实验性的尝试。它来源于整个开源社区在代码和数据上的整体贡献, 得益于整个信息科技领域对开源文化的推动,也得益于几个大的人工智能会议对被录用文章的数据和代码的公开性要求。

  在过去几年,围绕深度学习、神经网络等算法的代码以及公开数据集层出不穷。一个开发者,只需要懂 Python,就可以在一天之内构建起一个开发环境,并把开源的代码跑起来。利用开源的数据集,就可以重现别人的结果。

  一个新的人工智能研究方向出现,就伴随着一些优秀的数据集公开。例如,当年李飞飞主导的 ImageNet 为今天的图象识别奠定了最大的数据集基础,今年12月 MIT IBM Watson Lab 为了推动视频中的动作识别,共同推出的百万量级的视频动作数据集。所有的这些贡献,都是为了降低大家实验的难度,推动业界更快速地解决人工智能中的难题。在这种人人都可以尝试的氛围下,既推高了大家对这个领域的关注和兴趣,必然也带来了人云亦云的火爆。

  但是,这是否就代表了今天在学术界解决了的问题,相关的技术已经可以大量地使用到工业界呢?我觉得大家需要看到工业界和学术界之间的差距。之前我也看到一些人工智能领域的专家进行了许多分析,我这里就讨论两点:

  ● 第一是数据的差异。

  数据是人工智能必不可少的用于训练机器的输入。而今天能在公开途径获得的数据集绝大多数都是非商业用途数据,大多数都是从互联网上积累的数据。真正用于工业场景的高价值数据是难以放到公开数据集中,也难以让千千万万研究者进行算法研究的。

  IBM 研究院在医疗、汽车驾驶、生产制造等重要行业领域与相关企业进行人工智能合作研究。在这些行业和企业中,我们遇到了大量公开数据集所没有的数据分布。在面对行业生产部署的严苛要求时,我们一些已有的研究是不适用的,许多在顶级会议中号称的最佳结果也是不适用的。因此,这里需要我们脚踏实地,深入工业行业进行人工智能的研究和开发。

  ● 第二是人工智能系统本身的成本。

  把人工智能用到工业界,我们需要认真审视它附加到现有产品上的成本开销。以视频监控为例,在视频监控中使用人工智能是一个很热的话题。今天,使用人脸识别、人或车辆的自动捕捉进行初步的视频分析已经开始广泛使用在城市、公共安全等领域。

  其实基于计算机视觉的人工智能可以做得更多,它可以检测和识别各种物体(而不仅仅是人或车辆),检测人的各种动作等等。但基于深度学习的目标检测算法往往需要大量的GPU计算资源。基于今年最新的GPU硬件能力,一块高性能的GPU也就只能支持3~4路视频的复杂目标检测(单个模型)。平摊到每路视频,就要大约1000~2000美金的硬件成本。相比起目前4K摄像头的成本,将近是10倍的成本差异。

  如果我们进一步考虑动作检测,使用光流计算或3D深度学习或者更复杂的算法,这个成本的叠加更加难以接受。所以,在人工智能向前行进时,我们需要更多的研究和创新,去解决全系统的优化问题,而绝对不能只停留在单一的功能或精准度的层面。

  继续分享“2018,人工智能可以在哪些领域最快得到应用和普及?”(三):对于在 AI 领域技术基础比较薄弱的企业,如何才能享受到 AI 带来的红利?


2017-12-28 来源:APICloud

高效的App定制平台,保上线、便宜、快!

提交APP定制开发需求
qq客服咨询